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Consideration is given to the problem of turbulent mixing behinning with the state of total unmixing
of a scalar field on the molecular level. It is implemented by numerical integration of the equation
for the single-point probability density function (PDF) ft(Γ) of fluctuations of a passive scalar field
using the tools of solution of retrospective problems. The obtained evolution of ft(Γ) agrees with the
results of a number of theoretical and experimental works.

Introduction. In the theory of turbulent combustion, the probabilistic description of interaction of the
events of turbulent mixing and chemical reactions based on the use of the formalism of the PDF of the tur-
bulent fluctuations has gained wide acceptance. The advantage of this method lies in the fact that in the equa-
tions for the PDF the source terms related to the production of mass in chemical reactions are expressed in
closed form. In this approach, the problem of closing arises only for the terms characterizing the turbulent
transfer and dissipation of fluctuations on the molecular level.

In the present work, consideration is given to the equation for the single-point PDF of fluctuations of
a passive scalar field. Formally, this equation has the form of the equation of transfer of the scalar with a
negative diffusion coefficient, which makes the problem under consideration similar to the classical incorrect
problems [1], in particular, to the retrospective problem (the problem with inverse time) [2]. Such a structure
of the equation does not allow direct use of conventional calculational procedures in numerical integration.

The aim of the work is to investigate turbulent mixing beginning with the state of total unmixing of
a scalar field on the molecular level. This problem is implemented by numerically solving the equation for
the single-point PDF ft(Γ) of fluctuations of a passive scalar field, statistically homogeneous on large length
scales, using the tools of solution of retrospective problems. In the work, we give a short review of the meth-
ods of numerical solution of such problems.

Single-Point PDF Equation. We will consider a random scalar reacting field c(xi, t) (fluctuations of
a mixture component), whose change is determined by the equation of balance [3]:

∂c

∂t
 + ui 

∂c

∂xi

 = D 
∂2c

∂xi∂xi

 + ω (c) . (1)

The single-point PDF ft(Γ) of the scalar is determined by the formula ft(Γ) = sδ(c(xi, t) − Γ)t [4]. In

deriving the equation for the function ft(Γ), use is made of the so-called finely dispersed probability density

Φ(Γ, xi, t) = δ(c(xi, t) − Γ) [4]; it is a function of the variable Γ and the functional of the field c(xi, t) and

possesses the property that Φ(Γ, xi, t)dΓ is equal to the probability of the values of c being a quantity equal
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to Γ at thr point xi and at the time t. Thus, ft(Γ) = sΦt. Differentiating the function Φ(Γ, xi, t) with respect

to time and using (1) and the relation 
∂Φ
∂t

 = 
∂Φ
∂c

 
∂c

∂t
 = −

∂c

∂t
 
∂Φ
∂Γ

, we can obtain an equation for the finely

dispersed distribution function. Further averaging yields an equation for the single-point PDF ft(Γ). For the
case of homogeneous fields on large length scales in an incompressible fluid without the process of chemical
reacting, we have [3]

∂ft (Γ)

∂t
 = − 

∂2

∂Γ2 [χt (Γ) ft (Γ)] ,   − 1 ≤ Γ ≤ 1 , (2)

where χt(Γ) = Ds
∂c

∂xi
 
∂c

∂xi
 c = Γt is the conventional dissipation rate of the intensity of scalar fluctuations. The

term on the right-hand side of Eq. (2) describes diffusion in the space of the considered scalar quantity. Its
unclosed form (since χt(Γ) is an unknown function) creates the main difficulty in describing the processes of
turbulent mixing on the basis of the PDF. For closing it different models are suggested. For instance, in [5]
the expression for χt(Γ) was obtained using the method of mapping functions in the form

χt (Γ) = A (t) exp 


 − 2 [erf−1 Γ  ]2


  ,

(3)

where A(t) = χ(t) cot {π[sc2(0)t − sc2(t)t]}. The functions sc2t and χ are the solution of the external prob-
lem. Let us assume that their evolution is known.

We choose the initial form of the function ft(Γ) in a form that corresponds to the state of total un-
mixing of a scalar field on the molecular level:

ft (Γ) t=0 = 
1
2

 [δ (Γ + 1) + δ (Γ − 1)] . (4)

For the convenience of further numerical investigation, we introduce the integral distribution function

Ft(Γ) = ∫ 
0

Γ

ft (Γ
^

)dΓ
^

 and, taking into account symmetry of the function χt(Γ) and antisymmetry of Ft(Γ), we

write problem (2)−(4) for 0 ≤ Γ ≤ 1 in terms of this function as

∂Ft (Γ)
∂t

 = − 
∂
∂Γ

 



χt (Γ) 

∂
∂Γ

 Ft (Γ)




(5)

with the corresponding initial

Ft (Γ) t=0 = F0 (6)

and boundary conditions

Ft (Γ) Γ=0 = 0 ,   Ft (Γ) Γ=1 = 0.5 . (7)

Retrospective Problems and Some Methods of Their Numerical Solution. As has been mentioned
in the Introduction, problem (2)−(4) (along with (5)−(7)) is similar to incorrect problems because the right-
hand sides of the equations contain expressions having the form of the terms with a negative diffusion coef-
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ficient in the phase space of the scalar values [1]. In particular, mathematically it can be considered as the
retrospective problem of parametric identification according to the classification given in [2, 6−8], where an
analysis is made of the state-of-the art and some prospects for the development of the methods of solution of
such problems in thermophysical studies. This becomes completely clear if, for instance, in (5)−(7) we per-
form replacement of the time variable θ = T − t:

∂Ft

∂θ
 = 

∂
∂Γ

 



χt (T − θ, Γ) 

∂Ft

∂Γ



 , (8)

Boundary  conditions:  Ft Γ=0 = 0 ,   Ft Γ=1 = 0.5 . (9)

Here, some additional information for θ = T is known, Ft θ=T
 = F0, and we seek the form of the function

Ft θ=0
 at the initial time θ = 0 that satisfies the measurement result at the end of the time interval θ = T.

The general methodology of solution of incorrect problems is formulated in [1] based on the regulari-
zation theory and numerous methods and algorithms which implement the basic concepts of this theory. As
applied to the formulation of the problem of the present work, we would like to note the methods with per-
turbation of the initial equation, namely, the quasi-inversion methods in different variants [9, 10]. Another
class of methods is related to perturbation of the initial conditions and requires formulation of the problem as
a problem of optimal control [11]. Based on the general results of the theory of construction and stability of
difference schemes [12], algorithms are suggested to solve retrospective problems based on the regularization
principle that allows one to obtain difference schemes of prescribed quality which approximate the retrospec-
tive problems and are uniformly stable in the initial data. Such an approach is described in [9]. For the type
of inverse problems considered, completely stable difference schemes are constructed in [13, 14]. A particular
case of them is the so-called superexplicit schemes representing standard schemes with weights [12] but with
a negative choice of the weight parameter [15]. The iteration methods of solution of incorrect problems [16,
17], where the number of iterations consistent with the error of input data serves as the regularization pa-
rameter, and the gradient iteration methods with a variational formulation of the retrospective problem [2, 18]
have found wide application.

Algorithm of Numerical Solution. One of the last mentioned approaches, i.e., the method of conju-
gate gradients [2, 18], was used in solving (5)−(7) for the integral distribution function Ft(Γ) with the pre-
scribed form (3) for the conventional rate of scalar dissipation χt(Γ). We reduce problem (8) and (9) to a
form convenient for application of this method. We represent Ft(Γ) as the sum Ft(Γ) = F + F∗ , where F(Γ, θ)
is the solution of the problem

∂F

∂θ
 = 

∂
∂Γ

 



χt (T − θ, Γ) ∂F

∂Γ



 , (10)

initial conditions: F θ=0 = ξ(Γ) (in principle, this is the sought function), (11)

boundary  conditions:  F Γ=0 = 0 ,   F Γ=1 = 0 . (12)

It is known additionally that for θ = T, F θ=T
 = F0 − F∗

:
θ=T = Ψ(Γ). In turn, F∗ (Γ, θ) is the solution of the

following problem:

∂F∗

∂θ
 = 

∂
∂Γ

 



χt (T − θ, Γ) ∂F∗

∂Γ



 , (13)
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initial  conditions:  F∗  θ=0 = F0 , (14)

boundary  conditions:  F∗  Γ=0 = 0 ,   F∗  Γ=1 = 0.5 . (15)

The solution of (13)−(15) presents no difficulties, but that of (10)−(12) requires the use of the method
of conjugate gradients [2, 18], whose idea consists of constructing an iteration algorithm that gives a se-
quence of approximations of {ξn} beginning with some initial prescribed estimate ξ0. A correction on each
iteration is calculated from the condition of decrease in the objective functional in the form of the root-mean-
square discrepancy

J (ξ) = 
1
2

 ∫ 
0

1

(F (ξ, Γ, T) − Ψ (Γ))2 dΓ → min
ξ

 , (16)

which determines the extent of deviation of the function F(ξn, Γ, T) (the solution of (10)−(12) for ξ = ξn) from
the known Ψ(Γ). For this purpose, we introduce a function ψ(Γ, θ) such that ψ(Γ, T) = F(ξ, Γ, T) − Ψ(Γ), and
the gradient of functional (16) is found as the solution ψ(Γ, 0) of the problem conjugate to 910)−(12):

∂ψ
∂θ

 = − 
∂
∂Γ

 



χt (T − θ, Γ) 

∂ψ
∂Γ




 , (17)

initial  condition:  ψ (Γ, T) = F (ξ, Γ, T) − Ψ (Γ) , (18)

boundary  condition:  ψ Γ=0 = 0 ,   ψ Γ=1 = 0 . (19)

In terms of the conjugate function ψ(Γ, θ), a sequence of approximations of {ξn} is constructed ac-
cording to [2, 18]

ξn+1 = ξn − βn pn ,

where

βn = 
(ψn (Γ, 0), pn)

(F (pn, Γ, T), F (pn, Γ, T))
 ,   pn = ψn (Γ, 0) + 

(ψn (Γ, 0), ψn (Γ, 0))
(ψn−1 (Γ, 0), ψn−1 (Γ, 0))

 pn−1 ,   p0 = ψ0 (Γ, 0) ,

(V, U) is the scalar product in the functional space L2.
The algorithm of solving problem (10)−(12) involves the following steps:
1. Let ξ be an approximate value of ξ.
2. Next we solve problem (10)−(12) with the initial condition ξn.
3. We check the criterion of stop of the iteration process [2].
4. We solve problem (17)−(19) and find pn.
5. We solve problem (10)−(12) with the initial condition pn and calculate βn.
6. We find ξn+1 and pass to step 2.
Problems (10)−(12), (13)−(15), and (17)−(19) were solved numerically using an implicit difference

scheme. We used a nonuniform grid for the space variable Γ and a uniform grid for the time variable. At the
next time step, the values of the functions were found using the elimination algorithm [12].
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Results Obtained and Conclusions. The use of this algorithm has allowed integration of the equa-
tion for the function Ft(Γ) with the prescribed conventional rate of scalar dissipation χt(Γ) at desired time
intervals (Fig. 1). The evolution of the single-point PDF ft(Γ) of fluctuations of the scalar field in the initial
stages of mixing is of a single-mode nature (Fig. 2a). Next, in the intermediate stages ft(Γ) acquires a dou-
ble-mode form (Fig. 2b), which is indicative of the presence, in the flow, of unmixed components and those
mixed to a molecular level simultaneously. As a result, ft(Γ) tends to the state corresponding to total mixing
(Fig. 2c). Such behavior of this function was noted in a number of experimental and theoretical works
[19−22].

In considering problems of evolution of the single-point PDF, the conventional rate of scalar dissipa-
tion of fluctuations of the scalar field, and the joint PDF of fluctuations of an isotropic turbulent scalar field
and its gradient [20, 23] for the processes of turbulent mixing with chemical reactions, taking into account
the multiscale nature of turbulent mixing [19], some computational features arise which are similar to those
considered in the present work. Therefore, the results of the conducted computational experiment allow us to
hope that the algorithms of solution of retrospective problems that we used can find further successful appli-
cation in the indicated investigations.

This work was carried out with financial support from the Belarusian Republic Foundation for Basic
Research, grant T99M-032.

NOTATION

xi, Cartesian coordinates; ui, components of rate fluctuations; t and θ, time variables; T, bound of the
time interval; D, diffusion coefficient; ω(c), function describing the rate fluctuations of a chemical reaction;
s t, operator of averaging over the ensemble of implementations; δ, Dirac function; Γ, independent PDF vari-
able; erf−1  Γ , function reciprocal of the integral of errors; sc2(t)t, variance of scalar fluctuations; χ(t), mean

Fig. 1. Evolution of the integral distribution function Ft(Γ): 1) t = 0; 2)
0.5; 3) 0.9; 4) 1.07; 5) 1.17; 6) 1.24; 7) 1.26; 8) 1.2685; 9) 1.27.

Fig. 2. Evolution of the single-point probability density function ft(Γ) in
the initial (a), intermediate (b), and final (a) stages of mixing (notation is
the same as in Fig. 1).
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dissipation rate of scalar fluctuations; Γ
^
, integration variable; Jn, functional on the nth iteration. Subscripts

and superscripts: t, dependence on time; i = 1, 2, 3, number of the component; n, iteration number.
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